学术前沿丨《文化遗产杂志(JCH)》第三、四季度论文荐读
2026-02-06 08:31 湖北
![]()
本期内容选取《文化遗产杂志》2025年第三、四季度的10篇论文进行介绍。
《文化遗产杂志》(Journal of Cultural Heritage,简称JCH)是一份涵盖多学科领域的科技期刊,致力于广泛探讨文化遗产保护与认知的相关议题。该期刊旨在提出创新性的方法,推动遗产科学的发展,从而提升文化遗产的研究水平与知识积累。主要聚焦于以下领域:
保护、保存和利用文化遗产;
遗产管理和经济分析;
文化遗产中的计算机科学;
可持续发展和文化遗产;
气候变化对文化遗产的影响及其变化的管理。
本期内容将选取《文化遗产杂志》2025年第三、四季度的10篇论文进行介绍。
![]()
01
文化遗产保护面临的新人工智能挑战:综述
New AI challenges for cultural heritage protection: A general overview
Francesco Colace, Rosario Gaeta, Angelo Lorusso, Michele Pellegrino, Domenico Santaniello
摘要:文化遗产在维系集体身份认同与历史传承方面发挥着重要的社会作用,是连接过去、现在与未来的纽带。在这一背景下,技术创新的贡献至关重要,它为应对文化遗产保护与价值提升中的各类问题提供了必要的工具与解决方案。本研究全面综述了机器学习(ML)技术在文化遗产(CH)保护领域的应用,重点凸显了近年来的重要发展与创新成果。研究分析了机器学习与人工智能方法的主要应用场景,包括文物分析、修复工作、保护策略制定以及游客体验提升等。根据应用领域、所采用的数据类型与技术以及关注的文化遗产类型,对现有研究进行了分类梳理。该分类同时指出了潜在的研究挑战,并为未来研究方向提供了参考。研究表明,将机器学习、人工智能与传统保护修复工具相结合的多学科方法正日益得到广泛应用。通过重新解读多个案例研究,本文深入探讨了这些技术的实际应用意义,包括建筑预防性维护、文物数字化与三维重建以及通过虚拟现实和增强现实技术提升游客体验等。这一研究结果凸显了技术人员、修复师与文化工作者加强合作的必要性,以确保这些技术能够以审慎、符合伦理且有效的方式融入文化遗产保护工作。
关键词:机器学习;深度学习;预测性维护;物联网;模式识别;调查
Abstract:Cultural heritage plays an important social role in preserving collective identity and history, acting as a link between past, present and future. In this same context, the contribution of technological innovations plays a fundamental role as it provides the tools and solutions needed to address the issues of cultural heritage preservation and enhancement. This study presents a comprehensive review of the application of machine learning (ML) techniques in the field of cultural heritage (CH) protection, highlighting important developments and innovations in recent years. The main applications of ML and AI methodologies are analyzed, including artefact analysis, restoration, conservation strategies, and enhancing the visitor experience. The available studies are classified according to the areas of application, the types of data and technologies employed and the types of cultural heritage assets they focus on. The classification also highlights potential research challenges and provides indications for future directions. The study shows the increasing adoption of the multidisciplinary approach combining ML and AI with traditional tools of protection and conservation. The discussion is articulated through the reinterpretation of several case studies that demonstrate the real implications of such technologies, including the preventive maintenance of buildings, as well as the digitalization and three-dimensional recreation of artefacts and visitor experiences through virtual and augmented reality. This highlights the need for closer collaboration between technicians, conservators, and cultural workers to ensure thoughtful, ethical, and effective integration of these technologies into cultural heritage conservation.
Keywords:Machine learning;Deep learning;Predictive maintenance;IoT;Pattern recognition;Survey
![]()
图:文献耦合网络
Fig . Bibliographic coupling network.
02
基于迁移学习与数据增强的文化遗产建筑分类深度学习方法
A deep learning approach for cultural heritage building classification using transfer learning and data augmentation
André Luiz Carvalho Ottoni , Lara Toledo Cordeiro Ottoni
摘要:历史建筑中建筑构件的检测对于文化遗产的数字化建档与保护过程至关重要。对此,近年来已有研究探索将人工智能与计算机视觉相结合,以提升古迹关键构件的检测效果。然而,该研究领域仍缺乏关于利用迁移学习与数据增强改善机器学习模型性能的相关探究。此外,现有文献中关于人工智能在巴西殖民时期建筑中应用的研究也较为匮乏。鉴于此,本研究提出一种基于迁移学习与数据增强的文化遗产建筑分类深度学习新方法。为此,构建了ImageMG数据集,该数据集包含来自巴西米纳斯吉拉斯州94座历史建筑的6449张图像,分为三角楣、教堂、门、窗和塔楼五类。同时,本研究评估了迁移学习对提升MobileNet架构在历史建筑构件检测任务中分类结果的影响。该方法还探究了64种数据增强组合的效果,利用六种几何变换(缩放、宽度偏移、高度偏移、垂直翻转、水平翻转和旋转)生成合成图像,用于训练深度学习模型。结果表明,迁移学习的优化与数据增强相结合,在文化遗产建筑分类性能方面取得了显著进展。使用ImageMG数据集进行的实验显示,迁移学习与垂直翻转相结合的方式在验证集(92.37%)、测试集1(90.22%)和测试集2(87.33%)中均取得了最佳准确率。
关键词:人工智能;文化遗产;数据增强;机器学习;迁移学习
Abstract:The detection of architectural components in historic buildings is essential for digital documentation and the conservation process of cultural heritage. In this regard, recent studies have explored artificial intelligence with computer vision to enhance the detection of key components in monuments. However, this field of research still lacks investigation into the influence of using transfer learning and data augmentation to improve the performance of machine learning models. Moreover, the literature still requires research on Artificial Intelligence applied to Brazilian colonial architecture. Thus, this study proposes a new deep learning approach for cultural heritage building classification using transfer learning and data augmentation. For this purpose, the ImageMG dataset is proposed, containing 6449 images of 94 historic buildings from the state of Minas Gerais (Brazil), categorized into five classes: fronton, church, door, window, and tower. Additionally, the influence of using transfer learning to enhance the classification results of the Mobilenet architecture in the task of detecting components of historic buildings is evaluated. The proposed approach also investigates the effects of 64 combinations of data augmentation, utilizing six geometric transformations (zoom, width shift range, height shift range, vertical flip, horizontal flip, and rotation) for generating synthetic images to train the deep learning models. The results showed that the optimization of transfer learning in conjunction with data augmentation demonstrated significant advances in the performance of cultural heritage building classification. Experiments with the ImageMG dataset using transfer learning and vertical flip achieved the best accuracy results in validation (92.37 %), test 1 (90.22 %), and test 2 (87.33 %).
Keywords:Artificial intelligence ;Cultural heritage ;Data augmentation ;Machine learning ;Transfer learning
![]()
图:基于迁移学习与数据增强的文化遗产建筑分类深度学习方法
Fig . A deep learning approach for cultural heritage building classification using transfer learning and data augmentation.
03
PyPotteryInk:基于单步扩散模型的考古陶器草图向出版级绘图转换工具
PyPotteryInk:One-step diffusion model for sketch to publication-ready archaeological drawings
Lorenzo Cardarelli
摘要:传统考古陶器建档需经历耗时的人工流程,即将铅笔草图转化为符合出版要求的墨线图。本文提出一种开源自动化流程工具PyPotteryInk,该工具基于改进的img2img-turbo架构,采用单步扩散模型,可将考古陶器草图转化为标准化的出版级绘图。该系统通过单次前向传播处理绘图,同时保留关键形态细节,并符合考古建档标准与分析价值要求。模型采用高效的动态重叠补丁分割方法,无论输入绘图尺寸大小,均可生成高分辨率输出结果。在意大利史前陶器绘图数据集上的测试验证了该方法的有效性,其成功捕捉到了装饰纹样等精细细节以及器型轮廓、柄部等结构元素。专家评估表明,生成的绘图符合出版标准,同时将单张绘图的处理时间从数小时大幅缩短至数秒。该模型仅需少量训练数据即可进行微调,以适应不同的考古场景,因此适用于多种陶器建档风格。研究提供了预训练模型、Python库及详细说明文档,以促进考古研究领域的推广应用。
关键词:陶器;考古绘图;生成式人工智能;图像到图像转换;扩散模型
Abstract:Archaeological pottery documentation traditionally requires a time-consuming manual process of converting pencil sketches into publication-ready inked drawings. This paper presents PyPotteryInk, an open-source automated pipeline that transforms archaeological pottery sketches into standardised publication-ready drawings using a one-step diffusion model. Built on a modified img2img-turbo architecture, the system processes drawings in a single forward pass while preserving crucial morphological details and maintaining archaeologic documentation standards and analytical value. The model employs an efficient patch-based approach with dynamic overlap, enabling high-resolution output regardless of input drawing size. The effectiveness of the approach is demonstrated on a dataset of Italian protohistoric pottery drawings, where it successfully captures both fine details like decorative patterns and structural elements like vessel profiles or handling elements. Expert evaluation confirms that the generated drawings meet publication standards while significantly reducing processing time from hours to seconds per drawing. The model can be fine-tuned to adapt to different archaeological contexts with minimal training data, making it versatile across various pottery documentation styles. The pre-trained models, the Python library and comprehensive documentation are provided to facilitate adoption within the archaeological research community.
Keywords:Pottery ;Archaeological drawing ;Generative AI ;Image-to-image translation ;Diffusion models
![]()
图:示例图像的推理补丁分割过程
Fig . Inference patching for an example image.
04
基于高光谱成像的古代壁画颜料无损分类方法
Non-destructive classification of ancient mural pigments by hyperspectral imaging
Tingting Li , Lihong Li, Ziru Yu, Bo Ning , Yong He, Wenxiu Wan, Zhiyuan Liu , Xiangyang Yu
摘要:古代壁画具有脆弱性与珍贵价值,其颜料的识别、修复与保护工作迫在眉睫。本研究提出一种融合高光谱成像、优化超像素分割与光谱处理的图像光谱融合(ISF)方法,实现对颜料的快速、无损分类。将该方法应用于云冈石窟壁画,基于ISF的支持向量机模型实现了古代壁画颜料的超像素级分类,准确率达87%。外部验证结果表明,该方法在不同保存状态的壁画中均表现出优异的分类性能。光谱特征分析显示,该方法通过光谱匹配和混合颜料分类,具备颜料识别的潜力。这种无损、非接触式检测方法可为壁画颜料识别提供方法论参考。
关键词:古代壁画颜料;高光谱成像;图像光谱融合;云冈石窟;超像素分割
Abstract:Given the vulnerability and value of ancient murals, there is an urgent need to identify, restore and preserve their pigments. This study develops an image spectral fusion (ISF) method integrating hyperspectral imaging with optimized superpixel segmentation and spectral processing to achieve rapid, non-destructive pigment classification. Applied to the Yungang Grottoes murals, the Support Vector Machine model based on ISF realizes the superpixel-level classification of ancient mural pigments with an accuracy of 87 %. External validation demonstrates its excellent classification performance across diverse mural preservation states. Spectral characterization analyses reveal the potential of the method in pigment identification through spectral matching, and pigment mixtures classification. This non-destructive, contactless detection method can serve as a methodological foundation for pigment identification in murals.
Keywords:Ancient mural pigments;Hyperspectral imaging;Image spectral fusion;Yungang Grottoes;Superpixel segmentation
![]()
图:ISF 方法流程图。步骤包括:(a)采用遗传算法优化参数的 Quickshift 算法提取图像数据纹理特征;(b)通过归一化和直方图均衡化增强光谱数据;(c)利用 Savitzky-Golay 平滑法和一阶导数对光谱数据进行预处理;(d)获取基于超像素块重新定义的光谱数据。
Fig . Flowchart of ISF method. The steps include: (a) Quickshift algorithm extracts the texture features of the image data, with parameters optimized by Genetic algorithm; (b) Normalization and Histogram Equalization enhance the spectral data; (c) Savitzky-Golay Smoothing and First Derivative preprocess the spectral data; (d) Gain the spectral data redefined according to the superpixel block.
05
基于高光谱成像数据的中国古代绢画霉变光谱指数
A mildew spectral index of ancient Chinese silk paintings based on hyperspectral imaging data
Sa Wang, Yi Cen , Liang Qu , Xiaojie Gao , Guanghua Li , Yao Chen
摘要:书画作品承载着重要的历史价值,是人类文化遗产传承的重要载体。然而,霉变的滋生会严重影响书画的保存状态,进而损害其文化价值与传承延续。传统霉变检测方法以人工目视检查和 / 或化学分析为主,存在检测效率低、结果主观性强、难以满足无损检测要求且准确率偏低等局限。本研究针对上述问题,结合高光谱成像技术与中国古代绢画的霉变特征,构建了一种新型霉变光谱指数(MSIndex),为中国古代绢画霉变区域的快速、精准、无损提取与识别提供了技术支撑。研究首先对中国古代绢画上的霉变光谱特征展开分析,并基于高光谱数据优化霉变的光谱特征指标;在此基础上构建霉变光谱指数,实现对霉变的检测识别。研究以清代(1796-1805 年)《沈清岚铁络图》的高光谱数据集为样本,对所提霉变检测方法进行验证,同时选取乾隆二十一年(1756 年)《宾头卢尊者像》的高光谱数据集作为独立验证集,检验方法的泛化能力。结果表明,本研究构建的霉变光谱指数检测性能稳健、效果良好,霉变检测的总体准确率达 94.17%;即便在存在其他颜料干扰、画作伴生其他病害等复杂场景下,该指数仍能有效识别霉变区域。本研究提出的检测方法可为文物保护工作者制定精准的中国古代绢画修复方案提供依据,为文化遗产的保护传承提供技术支持。
关键词:高光谱遥感;光谱特征;特征选择;中国古代绢画;霉变光谱指数
Abstract:Painting and calligraphy possess significant historical value and play a crucial role in the transmission of human cultural heritage. However, the presence of mildew greatly impacts the preservation of painting and calligraphy, thereby affecting their cultural value and legacy. Traditional mildew detection methods rely on manual visual inspection and/or chemical analysis, which are limited by inefficiency, subjectivity, the need for nondestructiveness, and low accuracy. Here, we overcome these limitations by developing a new mildew spectral index (MSIndex) using hyperspectral imaging technology and the mildew characteristics of ancient Chinese silk paintings. This approach provides support for the rapid, accurate, and nondestructive extraction and identification of mildew in ancient Chinese silk paintings. We first analyzed the mildew spectra on ancient Chinese silk paintings and optimized the spectral characteristics of mildew based on the hyperspectral data. Then, using this analysis, we constructed the MSIndex to detect mildew. We tested the proposed mildew detection method on the hyperspectral dataset of Shen Qinglan Tieluo on Qing Dynasty (1796–1805), followed by the evaluation of its generalization ability using the hyperspectral dataset of the Portrait of Pañcika Arhat (dated 1756) as an independent validation set. The results suggested that the proposed MSIndex was robust and effective with an overall accuracy of 94.17 % in mildew detection. The MSIndex was also capable of detecting mildew regions even in complex environments, such as those involving other pigments or diseases. This method can help professionals make accurate restoration plans for ancient Chinese silk paintings and support the preservation of cultural heritage.
Keywords:Hyperspectral remote sensing; Spectral characteristics; Feature selection; Ancient Chinese silk paintings; Mildew spectral index
![]()
图:基于霉变光谱指数的霉变检测结果
Fig . Mildew detection results based on the MSIndex.
06
地下建成遗产实时可视化增强方法
Methods for real-time underground built heritage visualization enhancement
Robert Olbrycht, Alfonso Bahillo Martínez, Ernesto Marcheggiani, Müge Akkar Ercan, Pinar Karagöz, Karol Kropidłowski, Giuseppe Pace
摘要:本论文旨在解决地下遗产地实时可视化增强所面临的挑战。针对地下环境中光线不足和人类色彩感知受限等问题,研究提出一种融合图像处理技术与增强现实(AR)理念的解决方案。该系统采用集成立体视觉相机的虚拟现实(VR)头显捕捉实时图像,为提升图像质量,评估了多尺度视网膜增强算法(MultiScale Retinex)和对比度受限自适应直方图均衡化等多种图像处理算法。结果表明,所提出的方法能有效提升地下遗产地的观光体验,图像处理算法成功提亮了阴暗区域、提高了图像清晰度,并呈现出细微的色彩差异。论文详细阐述了系统架构与技术要求,并在地下遗产地进行了原型测试。总体而言,该系统显著改善了地下遗产地的实时可视化效果,为游客提供了更具沉浸感和丰富度的视觉体验。该研究为该领域的未来应用与研究提供了宝贵见解,对地下遗产可视化领域的发展具有重要意义。
关键词:地下遗产;图像处理;立体视觉;增强现实
Abstract:This scientific paper aims to address the challenges that come with enhancing the real-time visualization of underground heritage sites. The study seeks to overcome the limitations of low-light conditions and human color perception in underground environments by proposing a solution that combines image processing techniques and augmented reality (AR) concepts. The system utilizes a virtual reality (VR) headset integrated with a stereovision camera to capture live images. To improve image quality, the study evaluates various image processing algorithms, such as MultiScale Retinex and Contrast Limited Adaptive Histogram Equalization. The results show that the proposed methods are effective in enhancing the sightseeing experience of underground heritage sites. The image processing algorithms successfully brighten dark areas, increase clarity, and reveal subtle color differences. The paper discusses the system architecture and requirements, along with prototype testing in underground heritage sites. Overall, the developed system significantly improves the visualization of underground heritage sites in real-time, providing visitors with a more immersive and enhanced visual experience. The research offers valuable insights for future applications and research in this domain, contributing to the field of underground heritage visualization.
Keywords:Underground Heritage;Image processing;Stereovision;Augmented reality
![]()
图:代林库尤地下城(土耳其)的单张图像:(a)未处理图像;(b)色彩真实化处理后图像;(c)色彩自然化处理后图像;(d)色彩丰富化处理后图像
Fig . Single image from Derinkuyu Underground City (Türkiye): (a) without processing; (b) with color-realistic processing; (c) with color-natural processing, (d) with color-enriched processing.
07
基于可见光谱与成像技术的壁画无机红色颜料人工智能半定量分析方法
An artificial intelligence-based semiquantitative method based on visible spectroscopy and imaging to analyse inorganic red pigments in wall paintings
Roberto Sáez-Hernández, Jordi Cruz, Manel Alcalà-Bernàrdez, Ángel Morales-Rubio a, M. Luisa Cervera
摘要:人工智能(AI)与机器学习(ML)正在革新数据分析领域,带来了创新且高效的数据处理方法。本文提出一种基于可见光谱与数字图像比色法的化学计量学半定量模型,用于估算无机颜料中的金属含量。该模型采用支持向量机(SVM)和人工神经网络(ANN)回归方法,建立光谱、比色数据与元素组成之间的关联。研究制备了复制品,并使用三种无机红色颜料(朱砂、赤铁矿和铅丹)进行绘制,随后通过便携式X射线荧光光谱、可见反射光谱和数字成像技术对其进行分析。利用支持向量回归和人工神经网络实现元素信息与比色信息的交叉验证,并通过Venetian-blinds交叉验证法对模型进行验证。在校准阶段,铁(Fe)、铅(Pb)和汞(Hg)的均方根误差(RMSE)分别为0.03%、3.5%和3.0%,相关系数(R²)分别为0.99、0.90和0.94;在预测集阶段,铁、铅和汞的均方根误差(RMSE)分别为3.0%、2.6%和2.3%,相关系数(R²)分别为0.83、0.92和0.81。研究表明,创新的数据处理模型与无损便携式技术相结合,能够实现对文化遗产样本中无机颜料元素含量的估算。
关键词:人工神经网络;色度学;机器学习;壁画;颜料;预测
Abstract:Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing data analysis by introducing innovative and enhanced methods for data processing. In this article, a chemometric semiquantitative model based on visible spectroscopy and digital image colorimetry was applied to estimate the metal content in inorganic pigments. The model utilized Support Vector Machines (SVM) and Artificial Neural Networks (ANN) regression methods to correlate spectral and colorimetric data with elemental composition. Replicas were prepared and painted with three red inorganic pigments (cinnabar, hematite and minium), and they were analysed using portable X-ray fluorescence, visible reflectance spectroscopy, and digital imaging. Cross-reference between elemental and colorimetric information was performed using Support Vector Regression and Artificial Neural Networks, and the models were validated through Venetian-blinds cross-validation. In the calibration step, Root Mean Square Errors (RMSE) for Fe, Pb, and Hg were 0.03, 3.5, and 3.0 %, respectively, with correlation values (R2) of 0.99, 0.90, and 0.94. For the prediction set, RMSE was 3.0, 2.6, and 2.3 %, for Fe, Pb, and Hg, respectively, with R2 of 0.83, 0.92 and 0.81. This article demonstrates that innovative data treatment models, coupled with non-invasive and portable techniques, allow us to estimate the content of elements in inorganic pigments in Cultural Heritage samples.
Keywords:Artificial neural networks;Colorimetry;Machine learning;Mural paintings;Pigments;Prediction
![]()
图:各类颜料的反射光谱。蓝色曲线为平均光谱,浅灰色区域为标准偏差范围
Fig . Reflectance spectra for each kind of pigment. In blue, the average spectra. In light grey, the standard deviation.
08
气候规划中的文化遗产:基于挪威国家气候文件与指南的分析
Cultural heritage in climate planning: An analysis of the Norwegian national climate documents and guidelines
Paloma Guzman
摘要:文化遗产管理日益被视为气候行动与可持续发展的有机组成部分。然而,关于社会文化要素如何在协调统一的气候战略中落地实施的相关研究仍较为有限。本文构建了一个分析框架,用以评估文化遗产在气候政策话语体系中的融合程度,并以挪威 20 份国家气候政策文件为案例展开实证检验。本研究将转型治理方法应用于气候治理领域,强调文化遗产管理在支撑系统性变革中的作用。该分析框架揭示了文化遗产范式推动下,政策话语体系发生的两大核心转变:其一,文化遗产融入气候政策的愿景制定、行动实施与成效监测全流程;其二,跨部门协作范围进一步拓展,为政府层面的转型协同治理开辟了路径。研究发现,文化遗产在气候政策中的角色呈现逐步演进的特征,从最初关注气候影响引发的遗产保护冲突,转变为将文化遗产视作适应战略中亟需开展知识体系构建的重要领域。本文分析还表明,研究界对文化遗产的价值认知进一步拓展,认为其能够依托共有的社会文化价值提升民众生活品质,这也凸显出文化遗产的角色有望从技术咨询方,向治理网络中具备战略意义的关联型参与主体延伸。本研究以挪威为案例,明确了文化遗产作为跨部门协作、适应性治理与包容性决策催化剂的潜在切入点,为探索可持续发展治理中文化遗产在地方层面的融合应用及跨学科协作奠定了基础。
关键词:气候规划;文化遗产管理;政策融合;挪威
Abstract:Cultural heritage management is increasingly recognized as integral to climate action and sustainable development. Yet, limited research has explored how sociocultural elements are operationalized within coherent climate strategies. This paper proposes an analytical framework to evaluate the integration of cultural heritage within climate policy discourses, tested through a case study of twenty Norwegian national climate policy documents. Applying transformative approaches to climate governance, this study emphasizes cultural heritage management’s role in supporting systemic change. The framework identifies two primary shifts in policy discourse driven by cultural heritage paradigms: (1) integration across three stages—from visions and actions to monitoring—and (2) expanded sectoral collaboration, opening pathways for transformative governmental coordination. Findings reveal an evolution in cultural heritage’s role, from initial concerns about conservation conflicts due to climate impacts to recognizing cultural heritage as a sector requiring knowledge-building in adaptation strategies. The analysis further suggests an expanded view of cultural heritage’s contribution to the quality of life through shared sociocultural values, highlighting opportunities to extend its role from technical advisor to a strategic, relational actor within governance networks. By examining the case of Norway, this study concretizes entry points for cultural heritage’s potential as a catalyst for cross-sectoral collaboration, adaptive governance, and inclusive decision-making, setting a foundation for exploring local-level integration and interdisciplinary collaboration in sustainability governance.
Keywords:Climate planning; Cultural heritage management; Policy integration; Norway
![]()
图:挪威适应规划中文化遗产融合现状概述
Fig . Overview of cultural heritage integration in Norway's adaptation planning.
09
通过虚拟展卷解析佛教陀罗尼经卷,考释蒙古祭祀圣地的历史源流
Revealing the history of a Mongolian shrine by virtually unrolling Buddhist Dharanis
T.Arlt,B.Kantzenbach
摘要:蒙古佛教祭祀圣龛(蒙古语:gungervaa)形制各异,一如祭祀圣龛的概念存在于不同宗教体系之中。这类圣龛是佛教造像的护藏容器,其内供奉佛陀、菩萨、圣僧及德高望重僧众的画像与造像。圣龛主尊旁通常陈列着高僧的舍利,亦有信众敬献的各类供饰。由于蒙古佛教圣龛为家族世代传承之物,且供品会不断添置,历经数代便会累积品类繁多的藏品。因此,对圣龛内部的藏品构成展开考析、厘清每件藏品的源流与内涵,具有重要的研究价值。陀罗尼经卷(密咒经文)是蒙古佛教圣龛中常见的一类藏品,这类经卷多为丝帛裹护的微型纸卷,若对其进行实体展卷,会对文物本体的保存造成损害,故而并非理想的研究方式。研究工作亟需一种无损检测手段,以解读经卷内的文字信息。X射线断层扫描技术为探究这类易损文物的内部信息提供了可行路径。通过构建经卷的三维虚拟模型,研究人员可借助计算机软件对经卷内容展开分析与数字化操作,全程不会对经卷本体造成任何损伤。最终,研究团队成功从陀罗尼经卷中提取出文字内容,并完成了释译工作。
关键词:同步辐射断层扫描;成像技术;虚拟展卷;蒙古经卷;隐匿文字
Abstract:Mongolian Buddhist shrines (mong.: gungervaa) come in a variety of designs, just as the concept of shrines exists across different religions. These shrines are protective containers for icons, such as images or statues of Buddhist teachers, deities, saints, or revered clergy. The central figure is usually surrounded by relics from high-ranking lamas as well as decorative offerings presented by worshippers. Since gungervaas are inherited within the family and offerings are added constantly, they can accumulate diverse sets of items over several generations. It is therefore important to examine and analyze the composition inside and understand each single component. One type of object that is found in gungervaas are Dharanis (spell scriptures). Physically opening these tiny paper scrolls wrapped in silk poses a risk to their preservation, so it is generally not the preferred method. A non-destructive method is needed to decipher the written messages inside. X-ray tomography provides a way to examine the interiors of these fragile objects. By creating a three-dimensional virtual copy, it was possible to analyze and manipulate the content using computer software without harming the scrolls. Finally, text from inside the Dharanis scrolls was successfully extracted and translated.
Keywords:Synchrotron tomography; Imaging; Virtual unfolding; Mongolian scrolls; Hidden text
![]()
图:经卷 I(a-d)、经卷 II(e-h)及经卷 III(i-l)的横截面与放大视图。第一列为右侧细节信息的方位标注,第二列(棕色)为后续子图的横截面概览,第三列(蓝色)为经卷的纵向切片,第四列为横向切片,最后一列(绿色)为放大视图。
Fig . Cross-sections and magnification of scroll “I” (a-d), scroll “II” (e-h) and scroll “III” (i-l). The first column contains orientation information for the details on the right. The second column (brown) shows cross-sections overviews of the following subfigures. The third column (blue) shows vertical slices of the scrolls, while the fourth column shows horizontal slices. The last column (green) gives magnification.
10
文化遗产文物X射线计算机断层扫描数据在交互式网络应用中的嵌入——古老技术仪器的新型虚拟活化
Embedding of X‐ray computed tomography data of cultural heritage objects in interactive web applications -- old technical instruments brought back to novel virtual life
Pia Götz, David Melamed, Hendrik Bohling, Christine Brovkina, Istabraq Hussain, Nils Reims, Luca Junge, Dennis Hoffmann, Karolin Wiskandt, Ruth Schilling, Martin Hering-Bertram, Lucio Colombi Ciacchi
摘要:X射线计算机断层扫描(CT)已成为修复师、历史学家和考古学家无损检测博物馆文物内部结构的常用方法。本文展示了CT数据集的另一项应用,即如何对数据进行处理并转换为嵌入网络应用中的交互式计算机动画模型,使历史文物实现新型虚拟活化。这一方法为博物馆游客提供了一种新的互动方式,使其能够在现场展览和线上展览中与虚拟文物进行互动。研究全过程采用免费可获取的软件,确保相关成本对于公共机构而言具有可及性。该方法通过三件具有历史意义的航海技术仪器进行演示,这三件仪器跨越三个世纪,分别是18世纪的袖珍日晷、19世纪的航海天文钟和20世纪初的袖珍气压计。每件文物都具有独特的属性与特征,需要在数据处理流程中采用不同的方法与解决方案。这些处理流程的成果是能够展示古老仪器功能的交互式应用程序,有助于人们更好地理解其工作原理,并能引导游客关注单个技术细节、材料组成与外观特征或其他具有历史意义的属性。虚拟文物的可及性与吸引力带来了更具沉浸感的互动体验,有助于实现知识的有效传递。
关键词:海洋史;技术仪器;计算机断层扫描;摄影测量;数字保存;互动展览
Abstract:X-ray computed tomography (CT) has become a common method for conservators, historians and archaeologists to examine the interior of museum objects in a non-destructive way. This paper demonstrates an additional application of CT data sets. We namely show how the data can be processed and converted to interactive, computer-animated models embedded in web applications to bring back the historical objects to novel virtual life. This opens up a new way for museum visitors to interact with the virtual objects in both on-site and online exhibitions. The use of freely accessible software at all stages ensures that the involved costs remain accessible to public institutions. The approach is demonstrated using three technical instruments of historical significance spanning three centuries of maritime navigation: a pocket sundial, a maritime chronometer, and a pocket barometer manufactured in the 18th, 19th and early 20th centuries. Each object presents its own attributes and characteristics that require different approaches and solutions along the data process chains. The outcomes of these chains are interactive applications demonstrating the functionalities of the old instruments. This contributes to a better understanding of their modes of operation, and can focus the attention of the visitors to individual technical details, material composition and appearance, or other attributes of historical significance. The accessibility and appeal of the virtual objects results in a more immersive interaction experience facilitating a better transfer of knowledge to the visitors.
Keywords: Maritime history; Technical instruments;Computertomography;Photogrammetry;Digital preservation;Interactive exhibition
![]()
图:基于CT扫描的袖珍气压计无液气压盒表面模型局部特写(不同处理状态),以实体表面形式呈现。放大图像突出显示了三角形排列方式。左列:二次简化率为0%(初始状态)、50%、75%和99%后的未平滑网格;中列:经过一次拉普拉斯平滑后的相同表面;右列:一次拉普拉斯平滑后应用50%、75%和99%二次简化率的结果
Fig. Close-up of a part of the surface model of the aneroid cell of the pocket barometer derived from the CT scan at different manipulation states, rendered as solid surfaces. The zoomed-in images highlight the triangle arrangement. Left column: unsmoothed meshes after a Quadric Decimation of 0 % (initial), 50 %, 75 %, and 99 %. Centre column: same surfaces after one iteration of Laplacian Smoothing. Right column: Quadric Decimation of 50 %, 75 %, and 99 % applied after one iteration of Laplacian Smoothing.
![]()
以上内容来自JCH官方网站
https://www.sciencedirect.com/journal/journal-of-cultural-heritage
经数字人文资讯小编翻译整理而成
如需转载请后台私信联系
编译丨洪冰凤
校对丨罗斯鹏
排版丨魏翔
![]()